MAXIMUM REACH ENTERPRISES

1853 Wellington Court Henderson, NV 89014 Ph: 702 547 1564 kent.goodman @ cox.net www.maximumreach.com

25 May 2012

THE MILLSTONE II STEAM GENERATOR REPLACEMENT PROJECT waterford, connecticut

Unit 2 is the tall building just to the right of the stack

DESIGN OF THE LARGE EYE BARS (LINKS)

COMMENTS ON THE CALCULATIONS:

- 1. The first sheets 1 7 are designer's, checker's and reviewer's checklists to make sure that the design conforms to the nuclear codes and standards. They are included just to show the type of information that is required in a nuclear design.
- 2. The second sheets 1 9 are the actual calculations of the eye bars.
- 3. These design calculations were listed as SC-44 on our design calculation log.
- 4. Sheet 7 & sheet 8 did not copy well.

Sheet 7 was a check for the clearance between the Reliance spreader bar and the top hat on the SGLA.

Sheet 8 was a calculation of the weight of the eye bars.

5. Design references such as the AISC manual have not been included. If anyone wants to have any of the formulas explained, just let me know.

6. As a side note, Babcock & Wilcox (B&W) designed the 10" diameter trunnions and the bands. In our procedure for up/down ending the SGLA, we called out greasing between the eye bars and the trunnions. In reviewing our procedure, B&W marked it up with the words "do not use grease between the trunnions and the eye bars". We contested their comment, but after a series of telex's (emails were not available then) and meeting with the NU engineers, we were told not to grease the eye bars. We put them on notice in writing that it was a bad decision and that there was going to be galling between the trunnions and the eye bars. After we down ended the first old SGLA and removed the eye bars from the trunnions, sure enough there was bad galling on the eye bars and some on the trunnions themselves. Upon learning of this, B&W said to do what every we wanted to do. So we cleaned up the galling on both the eye bars and trunnions as best as the welders could. We then instructed the Boilermaker riggers to be sure and connect the trunnion bands to the SGLA's so that bearing would be on a fresh side and to hookup the eye bars so they would also be in bearing on the opposite side from the galling area. We then placed Teflon between the trunnions and eye bars and didn't have any more problems.

The photo below shows one of the large eye bars being load tested in Wilmington, CA. Coordinated Equipment Company was able to under bid all of the other testing yards in the USA because back in 1975, they bought all of the heavy lifting equipment including many large hydraulic cylinders and the sub-sea grapple or **claw** when the Howard **Hughes Glomar Explorer** was decommissioned. The Glomar Explorer was designed to recover 2,000 ton objects at a 17,000' depth. It was used to recover part of a Soviet submarine in the Pacific Ocean. To see more about this ship, go to http://www.hnsa.org/seashadow/doc/ASME12708.pdf. Down near the bottom of sheet 4, it states that the disposition of the Claw is unknown. Well, we know better. To see part of the Claw as a test device, go to Coordinated's website http://www.ceccwrr.com/testingfacility.asp and click on the test bed labeled "3". The number 3 test bed has been used to break 18" diameter Houser ropes for the Navy. It is ideal for doing this due to the large stroke of the test bed. As a side note, the first time Coordinated broke a 18" Houser rope, the recoil was so great that the rope ends destroyed their control house. Luckily, the test was being run remotely. While you are at the site, be sure and take the testing tour.

PROJECT: M	ILLSTONE	2 SGR	<u> </u>	PROJ	ECT NO:	830	2/00	>
SYSTEM:	GR	CODE:		SYMB	ol:	(
bus. xos : <u>C</u>	ALC NO.	SC-044						
ENGINEER(S)	TO INDICATE	THE INPUT AND			COMPAT		57755	E D
NEFERENCE DO	COPENTS OSLD	<u>-</u>			ATTACH	· <u>~</u>	APPRO	VAL
			<u>REV. 6</u>	DATE	SHEET	YES	<u>NO</u>	INITI
1. GENERAL	PLANT DESIGN	BASIS: NA						
2. SYSTEM D	EFINITION:	SGR						
3 DESTON T	NEORMATION P	ACKAGE FROM						
RELATED	EQUIP. VENDO	R: <u>NA</u>						
4. ELECTRIC	AL DIV. INPUT							
5. MECHANIC	AL DIV. INPUT							
6. HVAC INP	UT:	NA						
7. CONTROL	STATEMS IMPUT							
8. CIVIL/HY	DRAULICS SECT	$I. INPUT: \underline{NA}$						
9 4004 55		1/0						
2. ARCA. SE	CI. INPUI:							
10. CONFORME								
II. CHECKED	CALCULATIONS:	222-6.41						
12. VENDOR D		233-641						
13. DESIGN S	IANDARDS:							
14. CLIENT S						+		
IS. SITE CRI	TERIA: CLIENI	NA		,				
ENGINEER SIG	NATURE A	at land	m	~	DATI	. 8	- 2 -	.91
CHECKING PRO	CEDURE USED:	QAB 5.5		Di	EV & DATE	3	5-3	30-20
CHECKER'S ST	CNATURE . UP	II ou The	C TUK	~.	DATE	. 8	- 4 -	91
BENIEUTWC BB		*		PF	V. & DATI	···		. /
REVIEWING PR								
	NATURE: "				DAT	L:		

.

PLUOR DANIEL

SHEET NO. 2 of 7

DESIGNER'S, CHECKER'S AND REVIEW CHECKLIST FOR DESIGN CALCULATIONS, REPORTS & SPECIFICATIONS (CRS)

STRUCTURAL DIVISION

50-044

	·			(
	VEC	NO	N/A	COMMENT NO.
	123		N/A	
1. DOES THE DESIGN REVIEW PACKAGE CONTAIN THE INPUT AND REFERENCE DOCUMENTS LISTED ON PAGE 1 OF THIS CHECKLIST?	\checkmark			
2. IS THE CRS ADEQUATELY IDENTIFIED BY SUBJECT MATTER AND APPLICABLE FILE NUMBER?				
(A) CLIENT?	V			
(B) PROJECT?	\checkmark			
(C) STRUCTURE/SYSTEM?	V	L		
(D) SUBJECT MATTER?	V			
(E) FILE NUMBER?	V			
(F) WORK PACKAGE/WORK ITEM?		Ļ	V	
3. IS THE OBJECTIVE OF THE CRS ADEQUATELY IDENTIFIED?	V			
4. DOES THE CRS HAVE THE PROPER FORMAT?				
(A) ALL PAGES NUMBERED?	V			
(B) COMPUTER INPUT AND OUTPUT WHEN APPLICABLE?			\checkmark	
(C) SKETCHES?				
(D) REFERENCES?	V			
(E) APPLICABLE FDI STANDARDS?			V	

.

FORM I - 184DA 2/27/89

DESIGNER'S, CHECKER'S AND REVIEWER'S CHECKLIST FOR DESIGN CALCULATIONS, REPORTS & SPECIFICATIONS (CRS)

SALLI NU. 3 01

56-044

ITEM	YES	NO	N/A	ATTACH SHEE
5. IF COMPUTER PROGRAMS WERE USED,				
A. HAVE YOU REVIEWED THE PROGRAM				
VALIDATION DOCUMENTS FOR THE			\vee	
B. WERE CODES PROPERLY VERIFIED?			V	
C. WERE THEY APPROPRIATE FOR THE			V	
APPLICATION?			V	
E. WAS INPUT DATA CORRECT?			V	
F. IS THE COMPUTER PROGRAM IDENTIFIED?		+		
G. IS THE PROGRAM REVISION IDENTIFIED?		<u> </u>	\downarrow	<u></u>
6. ARE APPROVED DESIGN INPUTS USED?		<u> </u>	<u> </u>	
WERE THEY CORRECTLY SELECTED?		+	+	
(A) SYSTEM DEFINITION?		+	+	1
(B) TECHNICAL MEMO/DATA?		+	+	
(C) SUPPORTING CALCULATIONS?		+	+	
(D) CODES?		+	+	
(E) STANDARDS?	—	+	+~	
(F) REGULATORY GUIDES?		+	V	1
(G) BRANCH TECHNICAL POSITIONS:		+	+	
ARE QUALITY CONTROL AND QUALITY ASSURANCE REQUIREMENTS			\vee	
SPECIFIED AND INCORPORATED?				
8. ARE THE VARIOUS OPERATING CONDITIONS				
LUENTITIED AND CONSTDERED.			V	
(R) CTARTIR?			V	
(C) NORMAL OPERATION?			V	
(D) SHUTDOWN?		-	\vee	
(E) EMERGENCY?			V	
(F) ABNORMAL OR FAULTED?			V	
(G) SEVERE ENVIROMENTAL?				
(H) EXTREME ENVIRONMENTAL?				
	<u> </u>			

STRUCTURAL DIVSION

•

SHEET NO. 4 of 7

50+044

9. AR RE 10. AR ID	RE FIRE EQUIREME (A) P (B) F (C) C (D) B (E) I (F) S RE OTHER DENTIFIE	PROTECTION AND CONTROLLED ACCESS NTS SATISFIED IN THE DESIGN? HYSICAL SEPARATION? IRE RATINGS? OMBUSTIBILITY OF MATERIALS? ARRIERS? NTERLOCK SYSTEMS? ECURITY? FUNCTIONAL REQUIREMENTS			>	
10. AR ID	 (A) P⁺ (B) F (C) C (D) B (E) I (F) S RE OTHER DENTIFIE 	HYSICAL SEPARATION? IRE RATINGS? OMBUSTIBILITY OF MATERIALS? ARRIERS? NTERLOCK SYSTEMS? ECURITY? FUNCTIONAL REQUIREMENTS				
10. AR ID	(B) F (C) C (D) B (E) I (F) S RE OTHER DENTIFIE	IRE RATINGS? OMBUSTIBILITY OF MATERIALS? ARRIERS? NTERLOCK SYSTEMS? ECURITY? FUNCTIONAL REQUIREMENTS				
10. AR ID	(C) C (D) B (E) I (F) S RE OTHER DENTIFIE	OMBUSTIBILITY OF MATERIALS? ARRIERS? NTERLOCK SYSTEMS? ECURITY? FUNCTIONAL REQUIREMENTS				
10. AR ID	(D) B. (E) I (F) S RE OTHER DENTIFIE	ARRIERS? NTERLOCK SYSTEMS? ECURITY? FUNCTIONAL REQUIREMENTS				
10. AR ID	(E) I (F) S RE OTHER DENTIFIE	NTERLOCK SYSTEMS? ECURITY? FUNCTIONAL REQUIREMENTS			\checkmark	
10. AR ID	(F) S RE OTHER DENTIFIE	ECURITY? FUNCTIONAL REQUIREMENTS				
10. AR ID	RE OTHER DENTIFIE	FUNCTIONAL REQUIREMENTS	T			
	(4) 8	D AND SATISFIED?				
	(A) K	ADIATION?				
	(B) S	PECIAL SUPPORTING SYSTEMS?		ļ		
11. HA Re IN	AVE CONT EQUIREME NCORPORA	IGUOUS SYSTEM DESIGN INTERFACE NTS BEEN IDENTIFIED AND TED?				
	(A) D	EFLECTION COMPATIBILITY?				
	(B) T	RANSFER OF LOADS?		ļ		
	(C) B	OUNDARY CONDITIONS?		ļ		
•	(D) D	IFFERENTIAL SETTLEMENTS?				
12. AF TE DI	RE THE A HE DESIG ESCRIBED	SSUMPTIONS NECESSARY TO PERFORM N ACTIVITY ADEQUATELY AND REASONABLE?	\checkmark			
13. A)) IS THE L	E DESIGN METHOD CONSISTENT WITH DESIGN INPUT?	V			
B)) IF AL WERE CONSI	TERNATIVE METHODS WERE USED, THE RESULTS REASONABLE AND STENT?			\checkmark	

.•

STRUCTURAL DIVISION RUGE DANIEL DESIGNER'S, CHECKER'S AND REVIEWER'S CHECKLIST FOR DESIGN CALCULATIONS, REPORTS & SPECIFICATIONS (CRS)

SHEET NO. 5 of 7

56-044

	TTFM	VEC			COMMENT NO.
14.	HAVE ALL APPLICABLE LOADING CONDITION	ILS	NO	N/A	ATTACH SHEET
	BEEN CONSIDERED?	s ,			
	(A) DEAD?	\checkmark			
	(B) LIVE?	\checkmark			
	(C) CONSTRUCTION?	\checkmark			
	(D) WIND?			V	
	(E) SEISMIC?			V	
	(F) HYDROSTATIC?			V	
	(G) FLOOD?			く	
	(H) TORNADO?			V	
	(I) PRESSURE?			\vee	
	(J) TEMPERATURE?			V	
	(K) EQUIPMENT/PIPE REACTIONS?	-		\checkmark	
	(L) VIBRATION?			$\overline{\mathbf{V}}$	
	(M) EXTREME PRECIPITATION?			V	
15.	IS THE SOURCE OF FORMULAS AND NUMERICA VALUES FROM CHARTS AND/OR TABLES PROPERLY REFERENCED?	L V			
	(A) REFERENCE, PAGE AND TABLE AND/OR CHART NUMBER?	\checkmark		·	
16.	WERE COMPUTER PROGRAMS PROPERLY VALIDATED AND APPROVED?			\checkmark	
L7.	IS THE STRUCTURE PROPERLY TIED TOGETHE AND IS TRANSFER OF FORCES PROPERLY ACCOMPLISHED?	R			
	(A) CONTINUITY OF VERTICAL ELEMENTS?			\vee	
	(B) DIAPHRAGM ACTION OF SLABS?			V	
18.	ARE THE ACCEPTANCE CRITERIA IDENTIFIED TO ALLOW VERIFICATION THAT THE DESIGN REQUIREMENTS HAVE BEEN SATISFIED?				
	(A) STRESS ALLOWABLES?	V			
	(B) DEFLECTION LIMITS?			V	

•

STRUCTURAL DIVISION

SHEET NO. 6 of 7

DESIGNER'S, CHECKER'S AND REVIEWER'S CHECKLIST FOR DESIGN CALCULATIONS, REPORTS & SPECIFICATIONS (CRS)

50-044

					COMMENT NO.
	ITEM	YES	NO	N/A	ATTACH SHEE
19.	ARE THE RESULTS REASONABLE COMPARED TO THE INPUT?	\checkmark			
20.	ARE THE SPECIFIED MATERIALS COMPATIBLE WITH EACH OTHER AND WITH THE ENVIRON- MENTAL CONDITIONS TO WHICH THE MATERIAL WILL BE EXPOSED?				
	(A) TEMPERATURE?			\vee	
	(B) PRESSURE?			\checkmark	
	(C) RADIATION?			\checkmark	
	(D) FATIGUE?			\vee	
	(E) CORROSION?			V	
	(F) EROSION?			V	
	(G) TRANSPORT AND STORAGE?			V	
	(H) HYDROGEN GENERATION?			V	
	(I) FIRE?			V	
	(J) CATHODIC PROTECTION?			V	
	(K) CHEMICAL REACTION?			V	
21.	ARE THE STRUCTURAL ELEMENTS SUITABLE FOR THE REQUIRED APPLICATION AND ARE THEY CONSTRUCTABLE?	\checkmark			
	(A) CONNECTION DETAILS?				
	(B) EMBEDMENTS?			V	
	(C) ATTACHMENTS?				
	(D) FASTENERS (BOLTS)?				
	(E) WELDING PROCESSES?		L		
	(F) LAMELLAR TEARING?				
	(G) CONCRETE DELAMINATION?				
22.	HAS ADEQUATE ACCESSIBILITY BEEN PROVIDED				
	(A) INSERVICE INSPECTION?		ļ	V	
	(B) TESTING?	L	ļ	V	<u> </u>
	(C) MAINTENANCE AND REPAIR?			\bigvee	

.

STRUCTURAL DIVISION DESIGNER'S, CHECKER'S AND REVIEWER'S CHECKLIST FOR DESIGN CALCULATIONS, REPORTS & SPECIFICATIONS (CRS)

SHEET NO. 7 of 7

50-044

				.	
	ITEM	YES	NO	N/A	<u>COMMENT NO.</u> ATTACH SHEET
23.	HAVE THE FURNISHING AND INSTALLING OF ALL STRUCTURAL MATERIALS BEEN ADEQUATELY IDENTIFIED?	\checkmark			
24.	HAS APPLICABLE CONSTRUCTION AND OPERATING EXPERIENCE BEEN CONSIDERED?	\checkmark			
25.	IF THE VERIFICATION OF THE DESIGN IS BY A QUALIFICATION TEST:				
	(A) IS THE TESTING IDENTIFIED AND DOCUMENTED?	 			
	(B) DOES THE TEST DEMONSTRATE THE ADEQUACY OF PERFORMANCE UNDER THE MOST ADVERSE DESIGN CONDI- TIONS?			\checkmark	
	(C) WAS THE TEST PERFORMED IN ACCORDANCE WITH WRITTEN PROCEDURES?	-		\checkmark	
26.	WERE THE REQUIREMENTS OF THE PROCE- DURES MET?	\checkmark			
27.	IF STANDARD DESIGN OR DETAILS WERE USED, WAS THE APPLICATION APPROPRIATE?	\checkmark			

FORM I - 184DA 2/27/89

DATE 1-31-91 CONT. NO. 830 100 CALCULATIONS and SKETCHES SC- 044 SHEET NO. CHK'D . MILLSTOLE RIGGING STEAM GENERATOR ZIGSING 1. PURPOSE & Scope: The purpose of this set of calculations is to design & specify the lifting attachments required for handling the steam generator lower assembly in the vertical position. 2. REFERENCES & DESIGN INPUT: 10 A. ANSI/ASME N45.2.15 - 1981 NUCLEAR RIGGING B. AISC MANUAL FOR STEEL CONSTRUCTION 9th, Edition 12 C. CE DWG E-233-641(6) 13 14 3. SUMMARY OF RESULTS & CONCLUSIONS: 15 16 The old Steam generator's lower assembly can be 17 safely removed and the new one safely installed 18 using links designed per these calculations. 19 20 4. CRITERIA & ASSUMPTIONS: 21 22 A. Per Fluor Rigging Dept. & Alse, Use 25% Impact. B. USE . 5 Fy for bearing (No impact) C. Use Hole Dia, & over pin Dia. 25 26 27 28 29 30 31 6/88 32 FORM E-050 REV. PRINTED IN U.S.A. 33 34 35 36 27 28 26

FLUOR DANIEL S CALCULATIONS and SKETCHES SC	-044-SHEET NO. 2
	-T: B

1 1 1 1 1 1 1 1 1 1 1 1 1 1	$LINKS FOR LIFTING LOWER ASSY LOAD = 450 TON LOAD/LINK= 450 K TRUNION \phi = 10'' \pm 0'''(0) \frac{40''}{10}$
9 10 11 12	$TRY = 1/2 T-1 CAST4 GRATE TOOS PIN FY = 100 KSI MIN TOP END W/6" $PIN \pm 0.0"TOP END W/6" PIN \pm 0.0"$
14 15 16 17 18 18 19 20 21 21 21 22 21 21 22 21 21 21 21 21 21	$BEARING = \frac{450 k}{6'' \phi \times 2' k''} = 30.0 k_{S1} < .5F_{Y} (50 k_{S1})$ $END AREA REQ = .67 \times 450 k \times 1.25 = 8.38 m''$ $45 K_{S1}45F_{Y}$ $PER AISC D3.3 MAX BODY WIDTH = 6'' \phi PIN / 7/8 = 6.86'' USE 7''$ $MIN EYEBAR RAD. = \frac{8.38 m'}{2.50''} = 6.41'''$ $MIN EDCE DIST = \frac{2}{3} \times 7'' = 4.67''$ $MAX EDCE DATT = 3/4 \times 7'' = 5.25''$ $USE EVEBAR RAD = 6'/8'' \phi / 2 + 4.94'' = 8''$
FORM LU50 REV. 6/88 PRINTED IN U.S.A. 6 P. 9 P. 8 P. 9 P. 2	FOR 100 ksi MATL: 2.50" $R \times 5 = 12.50" 7 61/8" = 0K$. TRANSITION RADIUS = 16"

CONT. LINKS BOTTOM END W/10" of Pin BEARING = 450 k = 18.0 ks1 < 50 ks1 END AREA REQ = B. 38 M (FROM PREVIOUS PAGE) MIN EYEBAR HEAD RADIUS = 8.38 In2 + 5 In = 8.35 " MAX. BODY WIDTH = $10'' \phi P_{IN} / 7/8 = 11.43'' USE 7''$ MIN EDGE DIST.= 2/3 + 7'' = 4.67''MAX. EDGE DIST = 3/4 + 7'' = 5.25'': LISE EYEBAR RAD = 10" \$ Pin/2 + 5.25" = 10.25" LISE 11" 7.0 * 7/8 = 6.13" < 10" OK. FOR Fy = 100 21/2 R × 5 = 12.5 > 101/8" & Hole : Use A 21/2"x 7.0" BODY CHECK STRESS IN THE BODY $f_T = \frac{450 \, k \times 1.25}{3' \, k'' \times 7''} = 32.14 \, k \, s_1 \, < .6 \, F_y = 40 \, k$ 6/88 FORM E-050 REV. PRINTED IN U.S.A.

FLUOR DANIEL 21 MAR91 DATE CONT. NO. 830 10,0 CALCULATIONS and SKETCHES BYKEGOOMANCHKO W SHEET NO. 4 ASSUME A MOMENT 1 2 DUE TO THE AT THE TRUNION. EYEBAR FRICTION M = .2 GREASED F = 450 K * M = CONSERATIVE 90k MTRUNNION = 5× 90K 9 = 450 k- in 10 11 $S = bd^2 = z'/z' + \frac{\eta^2}{\mu}$ 12 13 14 = 20.42/n 15 16 $+b = \frac{450.0 k - 10 \times 1.25}{20.42} = 27.55 \text{ ksi}$ 17 18 19 $f_a = \frac{P}{h} = \frac{450k}{25.71} = 25.71 \text{ ksi}$ 20 21 22 $F_b = .6 \pm F_y = 60 \text{ ks}$ 23 24 60 ksi $F_{\pm} = .6 \pm F_{\pm} =$ 25 26 27 AISC HZ : COMBINED STRESS 28 29 $-f_{bx-} = F_{bx}$ + 30 41 31 FORM E-050 REV. 6/88 PRINTED IN U.S.A. 32 <u>27.55</u> **-**60.00 ≤ 1 33 25.71 + 34 35 . 46 = .89 4 1.0 CLOSE 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 + 36

DATE 27 APR 91 CONT. NO, 830/00 ELOODMANKHK'D W

NOTE : AS THE . 2 FOR & IS DNLY A GUESS COULD BE HIGHER, I RECOMMENDO THE FINAL DIMENSIONS OF THAT THE EVEBAR BE: 9″ TOP HEAD RADIUS Ξ 9 " BODY WIDTH = BOTTOM HEAD RADIUS 12" 12 13 MATL THICKNESS = 21/2" 14 -DLE &'s 18" OVER PIND 15 Ξ THE ABOUE INCREASES WILL PROVIDE A 16 LARGER SECTION TO RESIST THE 17 MOMENT DUE TO THE LINKS ROTATING 18 ON THE PINS OR TRUNNIONS. THE 19 1/8" OVER PIN & WILL HELP US WITH 20 21 BETTER CLEARANCES WHEN WE ARE INSTALLING THE LINKS OVER THE 22 TRUNNIONS, 23 24 THE KATIONAL FOR THE ABOUE DEVIATION 25 FROM AISC D3.3 ARE: 26 1. THE EYEBAR WAS DESIGNED PER ALSC D3.3 USINCA 900K LOAD, THE 27 28 INCREASED DIRENSIONS WILL STILL BE 29 FOR A gook LOAD BUT WILL NOW 30 31 PROVIDE ADDITIONAL SAFETY FACTOR 6/88 FOR COMBINED STRESS. 32 U.S.A. 33 2, FLUOR'S RIGGING DEPARTMENTS HAVE FORM E-050 ALWAYS USED A PIN HOLE SIZE YE" 34 LARGER THAN PING. TO JUSTIFY THIS, TH. 35 ALLOW, BEARING STRESS IS REDUCED FROM .9 10, 18 19 13 14

DATE 21 MAR91 CONT. NO, 830/00 BYREGOODHANCHE & SHEET NO. 6

FLUOR DANIEL 29 212 91 30100 CONT. NG. CALCULATIONS and SKETCHES DOMA CHK'D 49 6" \$ PIN CHECK (21/2"THICK) (21/2" THICK) 225 -C. 12.4 225 - $M = 225 + \left(\frac{2.5}{2} + .25 + \frac{2.5}{2}\right)$ 10 11 2 1/2" 1/4 21/2" 1/4 2/2" 12 -225 k * 2.5" 13 14 15 = 478.13 K-11 16 17 21.21 m3 .098175 (6)3 = 18 5 ju je Pin Ξ 19 20 = 28.18 ks1 < 50 ks1 fb = 478.13 K-10 × 1.25 21.21 103 21 22 23 Fy= . 5 x 100 = 50 ksi 24 25 į ÷. 26 27 28 29 30 31 FORM E-050 REV. 6/88 PRINTED IN U.S.A. 32 33

THE END